
A Concept for the Design of Learning Resources
for Application Programming Interfaces of Content

Management Systems
Sirma Gjorgievska

Faculty of Informatics, Technical University Munich
Email: sirma.gjorgievska@tum.de

Abstract—Application Programming Interface (API) is a set of
routines, protocols, and tools for building software applications.
Insufficient or inadequate explanation and examples of the APIs
structure and its usage present an obstacle for developers trying
to learn an API. As a result, well documented APIs that enhance
the experience for developers, became an essential requirement
for defining an API’s success. The most common way to document
APIs today is to produce documentation that accurately lists the
API endpoints, and describes the allowable operations on each,
making the APIs more precise and readable. There are various
tools that allow you to do this in an automated or semi-automated
way. However, there is a lack of a common and proven concepts
of how to introduce the developers to an API and train them
how to integrate APIs into their systems respectively. Therefore,
we propose A Concept for the Design of Learning Resources for
APIs of Content Management Systems (CMS) which will allow
developers to easily comprehend and learn how to use the specific
API endpoints. The evaluation of our proposal, has been made
on a next generation CMS system SocioCortex and its REST
API, which we have extended with our proposed model.

I. INTRODUCTION

Application Programming Interface is the interface to im-
plemented functionality that developers can access to perform
various tasks [1]. API allows one program to access the
data and services provided by another program, which makes
programming easier. Because of that in recent years, the
number of web applications offering Application Programming
Interfaces has increased dramatically [2]. Nowadays most
of the software projects reuse components exposed through
APIs. In fact, current-day software development technologies
are becoming inseparable from the large APIs they provide.
Beside all of the significant benefits APIs offer in the software
development, learning and using an API presents one of the
biggest challenges for developers. The most common way
for learning an API is through API documentation, which
is a technical writing on functionalities and usages of API
elements like classes and methods. The quality of API docu-
mentation is varying a lot, but it can be critical for software
developers. Documentation, on one hand, can help developers
work efficiently and it can even serve to promote the API. On
the other hand, documentation that does not meet its readers
expectations in the worst case can lead to abandonment of
the API. Although providing high-quality API documentation
is obviously desirable, studies suggest that current approaches
to developing and delivering documentation may not provide

software developers with what they need. Most of the API’s
documentation today have one or more of the following
problems: incompleteness, ambiguity, unexplained examples,
obsoleteness, inconsistency and incorrectness. Because of that
there are numerous researches analyzing the advantages and
disadvantages of the current approaches of designing an API
documentation. However, there is a lack of a common and
proven concept of how to introduce the developers to an
API and train them how to integrate APIs into their systems
respectively. Therefore, we propose a conceptual model of
API documentation. The model defines the guidelines for
creating an API documentation that will be easy to use and
will provide developers with the tools for more efficiently inte-
grating specific API into their system. We have structured our
proposed model into seven high-level guidelines: up-to date
documentation, documentation of the API’s high-level design,
quickstart, tutorial, best practices, API reference and multiple
ways of navigation. In addition, we have developed a prototype
implementation in order to assess our proposed model. As
part of the prototype, we have implemented a contemporary
web application, which is based on AngularJS and integrates
with well-established CMS (Content Management System)
platform SocioCortex. A CMS is a computer application that
supports the creation and modification of digital content using
a common user interface and thus usually supporting multiple
users working in a collaborative environment.

II. RELATED WORK

A Concept for the Design of Learning Resources for
Application Programming Interfaces of Content Management
Platforms has not been addressed yet in a way comparable to
the approach proposed in this paper. However, some research
that elaborates the current approaches to design and present
API documentation has already been made.

The work of Christopher Scaffidi [3] focused on four
specific challenges related to learning and using APIs. The
discussion of each challenge includes an outline of strategies
that API users employ for dealing with that challenge, as
well as strategies that API designers utilize for helping their
respective API users. Even though this article elaborates why
using an API is often difficult and emphasize the challenge
of inadequate documentation, it does not address the exact
shortcomings of the current API documentations.



The research conducted by Martin P. Robillard [1] address
the obstacles that Microsoft developers faced when learning
to use APIs. A major result of the survey is that learning
resources topped the list of obstacles to learning APIs. In
particular, insufficient or inadequate examples, the lack of
reference on how to use the API to accomplish a specific
task as well as having insufficient documentation on the high
level aspect of the API were among the most commonly
found obstacles. The study presented results at a high level
of abstraction (e.g., inadequate documentation on high-level
design), but failed to detail what these attributes mean in
practice (e.g., what makes for inadequate).

Another study of people’s needs and preferences with
respect to documentation was conducted by David G. Novick
and Karen Ward [4]. The study tries to find an answer to the
one of the most important questions ”What do users want in a
documentation”. In order to answer this question the authors
conducted series of interviews with 25 computer users repre-
senting a cross-section of uses in work settings. The study’s
participants indicated that they preferred documentation that is
easy to navigate, provides explanations at an appropriate level
of technical detail, enables finding as well as solving problems
through examples and scenarios, and is complete and correct.
While this study addressed many of the preferences of users
for API documentation, it did not clearly provide guidelines
of how to design good API documentation.

In addition, Mitchell [5] reported the results of a compre-
hensive study conducted by IBM. The study had three research
thrusts: supporting issues that influence attitudes toward tech-
nical documentation, attitudes toward documentation itself,
and importance of and satisfaction with key documentation
attributes. It found that users were very irritated with a lack
of concrete examples, difficulty in understanding the docu-
mentation, a lack of relevant information, problems finding
the information they need, and failure to address the why and
how of a specific task. Mitchell concluded that users want
information that is clear, accurate, and loaded with examples
and scenarios.

One aspect that none of these studies covered is that even if
the documentation is well written, most of the readers begin
to try to use the system without reading the whole manual.
As, Brockmann, in his paper ”The Why, Where, and How
of Minimalism” [6] notices that people avoid instructions and
simple steps and can only understand through the effectiveness
of their actions in the world. According to Brockmann adult
learners are impatient and want to get started quickly on
something productive, they skip around in manuals and on-
line documents and rarely read them fully, make mistakes
but learn most often from correcting such mistakes and they
are best motivated by self-initiated exploration. Accordingly,
our goal in this study was to propose a solution how to
keep readers engaged and help them learn more quickly and
efficiently.

III. SHORTCOMINGS OF CURRENT API LEARNING
RESOURCES

While some earlier studies have provided a partial view of
the shortcomings of the current API learning resources, none
of the current researches give a consolidated, complete list
of all shortcomings with more detailed explanation of each.
Based on reviewing related research as well as current state of
art practices, we identified five main shortcoming categories of
current API learning resources, namely: out of date documen-
tation, incomplete and incorrect documentation, ambiguous
documentation, difficulty finding the right information and
poorly presented documentation. You can see the list of all
shortcomings in the below Table I.

First, one of the most commonly find problems with the
current API learning approaches is that they are often out of
date and do not reflect the most current changes. Learning and
using APIs can be difficult for reasons stemming from the very
nature of software. Software can evolve quickly, which means
that APIs can rapidly become outdated [3] [7] [8] [9] [10]
[11].

Second, documentation is often incomplete and incorrect.
Documentation can be incomplete due to many different rea-
sons. In the trivial case, it can be because of the lack of effort
invested in it. Auto-generated documentation can sometimes
be example of such incompleteness, with no documentation at
all for many classes or methods. However, even when earnest
effort is invested in documenting an API, it can be difficult to
anticipate all the ways it can be used. When an API element
might be involved in complex interactions with other API
elements, understanding how to use it might require more
than the description of its functionality [4] [5] [8] [11] [12].
Moreover, there is schedule pressure due to a desire to be first
to market, so designers lack time for creating as much API
documentation as might be desired. Because of that reason
many documentations lack concrete code examples, which fail
to explain developers the specific usage of an API element [4]
[1]. Even if there are some code examples, they often do not
have an adequate explanation [12]. Furthermore, the progress
of the user can be hindered with no sufficient knowledge of the
API’s high level design. In fact, if readers do not understand
the design intents behind the API and the overall architecture,
they can have problems to choose among alternative ways to
use the API, structure their code accordingly, and employ it
as efficiently as possible. Additionally moving beyond trivial
usage involves many types of decisions that can be informed
by high-level design and still most of the today’s approaches
lack this important component [1].

Third, learning resources for API can be ambiguous with
unclear description of API elements. In this case, the docu-
mentation appears to cover a topic of interest but leaves out
important details so that multiple interpretations are possible,
which leads to confusion or incomprehension [12]. More-
over, many readers have problems with documentation clarity,
because it tends to be too complex for novice users with
unfamiliar technical jargon and extraneous information that



does not help solve their problem. Developers that are in a
process of learning the API can have difficult time making the
right choice among many alternative usages of an API along
with determining, which functions are optional and which are
required in order to achieve complex effects [1]. On the other
hand, the content should not become very basic and simplified,
because then documentation can easily become too general
without offering more detailed and specific knowledge of the
usage and functionality of the API elements [4].

Fourth, many APIs learning resources have grown very
large and diverse, making it harder for the readers to easily
find information they need. Many large documentations fail to
provide good navigation and developers have difficulty finding
useful search terms and locating solutions to problems quickly
[4] [5] [11]. Furthermore, users of the APIs are often under
time pressure, so they are unwilling to invest time in wandering
through API documentations. Because of that reason, it is
very important for the documentation to have good navigation
system, enabling users to more effectively use the API.

The last shortcoming we found in today’s API documen-
tation approaches is their poor presentation. Presentation of
the documentation is sometimes bloat, which means that
the description of an API element or topic is verbose or
excessively extensive. The risk with associating large chunks
of text to a specific element or topic is that readers will not
readily be able to determine whether the text provides the
information they seek, especially when the title or header
is general [12]. Another problem is fragmentation of docu-
mentation. In fact, developers have problems understanding
a documentation, when the information related to a specific
element is fragmented or scatted over too many pages. When
developers have to click through multiple pages of an API
document to learn the functionality and use of an API element,
they found the separation of the descriptions at such a micro
level to be unnecessary [12]. Moreover, if the documentation
contains instructions presented in some help displays and text
editor where the user should enter some commands, users can
have difficulty to both read and carry out the instructions at
the same time. In this case the instructions should not cover
or be covered by the application window.

IV. A CONCEPTUAL MODEL FOR API DOCUMENTATION

Based on the identified shortcomings and our own expe-
riences in using several real-world APIs, we have proposed
a novel conceptual model for API documentation that ad-
dresses the before mentioned concerns. We have structured our
proposed model into seven high-level guidelines: up-to date
documentation, documentation of the API’s high-level design,
quickstart, tutorial, best practices, API reference and multiple
ways of navigation.

A. Up-to date documentation

First and the most basic guideline is that documentation
should be up to date with the latest changes. If the documen-
tation does not reflect the most recent changes, the users may

not find the information they need, which in worst case can
lead to abandonment of the API.

Furthermore, the documentation has to be complete and
correct, by providing information that includes everything
necessary to learn an API and to prepare the developer to
successfully use the API and resolve problems [5].

B. Documentation of the API’s high-level design
Documentation should present the API’s high-level design.

API’s high-level design explains the architecture that is used
for developing the API. There can be multiple ways of
presenting the high-level design leveraging UML approach:
architectural diagram, use case diagram, component diagram
and class diagram.

The architectural diagram provides an overview of an entire
system, identifying the main components that are developed
and their interfaces. More detailed is the class diagram, which
describes the structure of a system by showing the system’s
classes, their attributes, methods and the relationships among
objects. In addition, user’s interaction with the system can
be presented using the use case diagram that represents the
relationship between the user and the different use cases in
which the user is involved. A use case diagram can identify the
different types of users of a system and the different use cases
and will often be accompanied by other types of diagrams as
well.

The purpose of presenting the API’s high-level design in a
documentation is to help developers choose among alternative
ways to use the API, structure their code accordingly, and
employ it as efficiently as possible.

C. Quickstart
Developers who use the API for the first time should have

instructions for installing and setting up the development en-
vironment. These instructions should be step-by-step guiding
through the process of installation and should be described
in a comprehensive manner, so readers from different level of
expertise can understand them. It is crucially important for the
documentation to provide help for all the users of the API and
it should not assume that developers have the same level of
knowledge, which means that the information should not be
either too high-level or too basic [4].

D. Tutorial
As mentioned earlier in Section II, people avoid instructions

and simple steps and can only understand through the effec-
tiveness of their actions in the world. Furthermore, developers
most of the time learn best by self-initiated exploration and by
making and correcting mistakes. Because of that a documen-
tation should offer readers a possibility to interactively try out
the API invocations directly in the browser. This can be done
by providing tasks which users have to solve. The level and
difficulty of the provided tasks should be different and should
be gradually increased.

Furthermore, the interface for interactive tutorial should be
designed in the manner to make it easy for the developers to
both read and carry out the instructions at the same time.



Category Shortcomings Research

Out of date documentation • A documentation is obsolete • Why are APIs Difficult to Learn and Use [3]
• A study of the documentation essential to software
maintenance [7]
• Measuring API Documentation on the Web [8]
• Live API Documentation [9]
• Investigating Web APIs on the World Wide Web [10]
• How software engineers use documentation state of
practice [11]

Incomplete/incorrect documentation • Lack of concrete examples • What users say they want in documentation [4]
• Unexplained examples • What Do Users Really Want From Computer Docu-

mentation [5]
• Lack of knowledge of API’s high-level design • Measuring API Documentation on the Web [8]

• How software engineers use documentation state of
practice [11]
• How API Documentation Fails [12]
• What Makes APIs Hard to Learn? Answers from
Developers [1]

Ambiguous documentation • Unclear description of elements • How API Documentation Fails [12]
• Too complex description for novice users • What users say they want in documentation [4]
• Too general documentation • What Do Users Really Want From Computer Docu-

mentation [5]
• Choose right function • What Makes APIs Hard to Learn? Answers from

Developers [1]
• Determine which functions are optional • Why are APIs Difficult to Learn and Use [3]

Finding the right information • Difficulty locating solutions to problems
quickly

• What users say they want in documentation [4]

• What Do Users Really Want From Computer Docu-
mentation [5]
• How software engineers use documentation state of
practice [11]

Poorly presented documentation • Bloat presentation • How API Documentation Fails [12]
• Fragmented documentation • What users say they want in documentation [4]
• Difficulty finding right information • What Makes APIs Hard to Learn? Answers from

Developers [1]

TABLE I: Categorization of shortcomings

E. Best practices

Documentation should include relevant examples, with ex-
planations at a length and level of complexity that is appro-
priate to the users knowledge [4] [5]. Users benefit a lot from
examples that show the best practices of an API’s use [1].
These examples should demonstrate actual (non-theoretical)
uses of the API and should be commented appropriately. If
developers can see the code snippets for particular program-
ming language, and know that the code works to produce the
desired result, then he/she can immediately put that into their
code and modify as needed.

F. API reference

API reference presents a list of all API’s functionalities.
The API reference can be organized by resource type, where
each resource type has one or more methods. Moreover, there
should be a detailed description for each class and method. The
description of API elements and topics in the documentation
should be short and precise, and therefore allow the readers
to easily and quickly determine whether the text provides the
information they seek. Furthermore, as mention in the Section
III a common mistake made in the current API documentation
approaches is that the information is fragmented or scatted

over too many pages [12]. To avoid that, the description related
to a specific API element should be presented in a single page.

G. Multiple ways of navigation

As APIs are growing bigger, it is essentially important for
the users to be able to easily navigate through the documen-
tation. In fact, users do not want to spend too much time
wandering through the APIs, unable to find the information
they need. Because of that documentation should provide
multiple ways of navigation and by that enable users to locate
solutions to problems quickly and easily [4] [1] [5]. In order
to do so documentation should include:

• Overview page
– Quickstart
– Tutorials
– Best practices
– API reference

• Categories
• Full text search
• Link to related resources
The overview page is designed for developers who are

first time encountering with the API documentation. This
page presents the main, before mentioned categories in the



documentation and offers the user to easily choose which one
he/she wants to start with. There are four categories presented:
quickstarts, tutorials, best practices and API reference. De-
pending on the user level of expertise and how good he/she
wants to learn the API, different categories are recommended.
The purpose of the overview page is to provide appropriate
level of help for novice as well as for expert users. Novice
users should first start with quickstart, which gives instruction
for installing and setting the development environment. How-
ever, expert users who already know those steps, can directly
go to API reference, which gives a comprehensive listing of
all functionalities of the API.

Furthermore, for easy navigation, the sidebar should be
divided by few categories and should have full text search fa-
cility. Besides that, good online documentation should include
pointers to additional sources of information [4].

V. PROTOTYPE

We have assessed our proposed model by developing a pro-
totype implementation. As part of prototype implementation,
we have developed a documentation module as a supplement
to a well-established Content Management Platform Socio-
Cortex [13]. The documentation module has been developed
as an AngularJS web application that integrates with the
SocioCortex backend.

AngularJS is an open-source web application framework
mainly maintained by Google and by a community of in-
dividuals and corporations to address many of the chal-
lenges encountered in developing single-page applications.
It aims to simplify both the development and the testing
of such applications by providing a framework for client-
side ModelViewController (MVC) and ModelViewViewModel
(MVVM) architectures, along with components commonly
used in rich Internet applications. The AngularJS framework
works by first reading the HTML page, which has embedded
into it additional custom tag attributes. AngularJS interprets
those attributes as directives to bind input or output parts of
the page to a model that is represented by standard JavaScript
variables. The values of those JavaScript variables can be
manually set within the code, or retrieved from static or
dynamic JSON resources.

SocioCortex is the next generation of the collaborative in-
formation system, which was developed at the SEBIS chair for
years. This system integrates proven features of SocioCortex’s
predecessor Tricia with approaches to end-user-oriented quan-
titative model analysis and the support for knowledge-intensive
processes [13]. By exposing its features via a standardized
API, the SocioCortex platform can serve as a foundation for
the development of context-and project-specific applications.
Our prototype application connects to SocioCortex backend.
In order to access SocioCortex REST API we used sc-angular
[14], which wraps the access to the REST API and furthermore
provides some convenience functions.

Furthermore, the look and feel of our web application is
based on the modified Read The Docs framework [15]. In
the SocioCortex server we defined the content according to

the seven guidelines from our proposed model. Our web
application then dynamically pulls the documentation data
from the SocioCortex server and visualizes the content.

For example, you can see the visualization of the 2nd
guideline (Documentation of the API’s high level design) in
the Fig. 1 below. The figure presents a Class Diagram, which
describes the structure of the system by showing the system’s
classes, their attributes, methods and the relationships among
objects. UML Class Diagrams are a de facto standard in the
design stages of a Software Development Process [16] and
are therefore suitable solution for a high-level design of API
documentation.

Fig. 1: Example of the 2nd guideline: Documentation of the
API’s high-level design

Fig. 2: Example of the 7th guideline: Multiple ways of
navigation

The Fig 2 depicts the 7th guideline (Multiple ways of
navigation). This guideline outlines the Overview page, Cat-
egories, Full text search and Link to related resources. As
presented in the figure, the overview page is further structured
into Quickstart, Tutorials, Best practices and API references.
Moreover, the sidebar is divided by few categories and have
full text search facility.

Furthermore, you can see the visualization of the 5th
guideline (Tutorial) in the Fig. 3 below. As you can see on



the picture there is a task given to a user and an interactive
code editor with console which offers the user possibility to
try out the API invocations directly in the browser.

Fig. 3: Example of the 5th guideline: Tutorial

The demarcation 1 from the Fig. 3 shows a code snippet,
presenting a typical usage of the SocioCortex REST API. The
style of the syntax has been made using prism.js library. The
demarcation 2 from the same figure depicts a code editor,
where user has to enter the code according to a task that is
given to him/her. When the user completes the assignment,
he can see the results of his code by pressing the run
button. Results are then presented in the console, shown in
demarcation 3.

For example, the Fig. 4 shows a wrong result, which is
marked in red.

Fig. 4: Wrong result of API call

On the other hand, the Fig. 5 below, presents how the output
looks like in the console, when the user entered the correct
code.

Fig. 5: Correct result of API call

For the code editor we have used Ace which is an embed-
dable code editor written in JavaScript [17]. It matches the

features and performance of native editors such as Sublime,
Vim and TextMate. Ace is maintained as the primary editor
for Cloud9 IDE and is the successor of the Mozilla Skywriter
project. Moreover, for the console implementation we have
used jq-console that is a jQuery terminal plugin written in
CoffeeScript, which tries to simulate a low level terminal by
providing (almost) raw input/output streams as well as input
and output states [18].

Furthermore, an example of the 6th guideline (API refer-
ence) is shown on the Fig. 6. On the picture we can see the
integration of Swagger UI visualization into our prototype
application. It was very important to incorporate Swagger
into our proposal, since it has become de facto standard for
describing and documenting REST APIs.

Fig. 6: Example of the 6th guideline: API reference

VI. CONCLUSION

In this paper, we proposed a conceptual model of API doc-
umentation, which will allow developers to easily comprehend
and learn how to use the specific API endpoints. The model
has defined the guidelines for creating an API documentation
that will be easy to use and will provide developers with the
tools for more efficiently integrating specific API into their
system. Based on the identified shortcomings and our own
experiences in using several real-world APIs, we proposed a
novel conceptual model for API documentation that addresses
the described concerns. We structured our proposed model into
seven high-level guidelines: (1) up-to date documentation, (2)
documentation of the API’s high-level design, (3) quickstart,
(4) tutorial, (5) best practices, (6) API reference and (7) multi-
ple ways of navigation. We additionally developed a prototype
implementation in order to assess our proposed model. As
part of the prototype, we implemented a contemporary web
application, which is based on AngularJS and integrates with
well-established CMS platform SocioCortex.

Although we believe that applying our principles can im-
prove the existing domain of API economy, the implemen-
tation of our model faces several technical challenges. The
first challenge is related with the integration complexities
between our model and a given solution. For instance, we
need to fully understand the system (software) architecture
on which we want to apply our model, and then find a way
how to implement our proposal. The second challenge is how



to implement a mechanism that will make sure to keep the
documentation up to date and manage all the versions of spe-
cific API. The third challenge is how to efficiently evaluate our
proposed model, since not all users possess same programming
skills and level of knowledge. For instance a beginner would
require some basic examples on how to invoke a REST service,
while an advanced user would just like to jump directly to
advanced topics, e.g. the list of API functionalities. Therefore
an advanced user might assess the model as too basic, while
the beginner might not fully understand the documentation due
to a high complexity.

As part of our future work we tend to extend our pro-
posed model with advanced interactive tutorial leveraging
virtual assistant, and additionally evaluate our proposal on
a well-established open-source API Management solutions,
such as JBoss apiman or WSO2 API Manager. Although
we have derived our guidelines from the extensive literature
review, the practicability and usefulness of our prototypical
implementation and case studies will have to be presented.
As part of future work we will also conduct a Quantitative
Empirical Study, stating which documentations comply with
our guidelines and which weaknesses current documentations
have.

REFERENCES

[1] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE computer science, 2009.

[2] J. J. S. J. H. S. R. Watson, M. Stamnes, “Api documentation and software
community values: A survey of open-source api documentation,” 2013.

[3] C. Scaffidi, “Why are apis difficult to learn and use?” Crossroads, 2006.
[4] K. W. David G. Novic, “What users say they want in documentation,”

2006.
[5] G. E. Mitchell, “What do users really want from computer documenta-

tion?” International Professional Communication Conference, 1993.
[6] R. J. Brockmann, “The why, where and how of minimalism,” Proceeding

SIGDOC ’90 Proceedings of the 8th annual international conference on
Systems documentation.

[7] C. T. Chris Parnin, “A study of the documentation essential to software
maintenance,” Proceedings of the 23rd annual international conference
on Design of communication: designing for pervasive information, 2005.

[8] C. Parnin and C. Treude, “Measuring api documentation on the web,”
Web2SE, 2011.

[9] R. H. Siddharth Subramanian, Laura Inozemtseva, “Live api documen-
tation,” ICSE’14, 2014.

[10] M. Maleshkova, “Investigating web apis on the world wide web,” Open
Research Online, 2010.

[11] A. F. T. Lethbridge, J. Singer, “How software engineers use documen-
tation state of practice,” IEEE Computer Society, 2003.

[12] M. P. R. Gias Uddin, “How api documentation fails,” IEEE Software,
2015.

[13] “Sociocortex,” https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex.
[14] “sc-angulalr repository,” https://github.com/sebischair/sc-angular.
[15] “Read the docs,” http://read-the-docs.readthedocs.io/en/latest/.
[16] J. M. J. L. Karina Robles, Anabel Fraga, “Towards an ontology-based

retrieval of uml class diagrams,” Information and Software Technology,
2012.

[17] “Ace editor,” https://ace.c9.io/.
[18] “jq-console github repository,” https://github.com/replit/jq-console.
[19] R. Watson, “Development and application of a heuristic to assess trends

in api documentation,” SIGDOC12, 2012.


